LC Resonance Calculator - LC谐振

[复制链接]
查看4752 | 回复3 | 2019-6-27 23:09:36 | 显示全部楼层 |阅读模式

马上注册,结交更多电磁兼容工程师,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

×
LC Resonance Calculator

LC Resonance Calculator

LC Resonance Calculator


LC-resonance-frequency-formula

LC-resonance-frequency-formula


L - inductor C - capacitorFrequency
101 μH 10μF5kHz
25356 μH100pF100kHz
1014 μH100pF500kHz
783 μH 10pF1.8MHz
323 μH10pF2.8MHz
101 μH10pF5MHz
254 μH1pF10MHz
2535.5998214938 nH1pF100MHz
25.355998214938 nH1pF1000MHz


The LC resonance frequency calculator is a calculator that computes the resonant frequency that is created from a single inductor and a single capacitor combined together.

The LC resonant circuit is composed of 1 inductor and 1 capacitor.

Just like an RC circuit, oscillations are produced. RC circuits have a frequency according to the formula, frequency= 1/RC.

LC circuits have a frequency according to the formula, frequency= 1/2πLC.

LC circuits produce oscillations through the continual discharging and recharging of a capacitor.

LC circuits can be incorporated into many different electronic components such as op amps, transistors, logic chips. Regardless of which component it is used in, it serves the same function and its composition of one inductor and one capacitor remains unchanged. Therefore, this calculator can be used for any LC circuit. The formula for calculating the frequency of the LC circuit will remain unchanged.

This calculator uses a variety of inductor and capacitor values. This calculator tries to take into account that for breadboarding purposes, large capacitor values are usually very hard to find. Components easily obtained for capacitors are values from 1pF to 4700μF. Therefore, this calculator only uses large capacitor values (up to 1 farad) for very small frequencies such as from 1Hz to 100Hz. Other than this, large capacitor values are avoided due to the fact of not easy accessibility.

Inductor values are most commonly used in the nanohenries to microhenries range. Just like with capacitors, large values for inductors such as in the millihenry range are generally avoided due to the fact that capacitors in the millifarads range are hard to obtain and not easily accessible. In fact, in this calculator, frequency values only from 1-2Hz utilize inductors in the millihenry range. The rest of inductors are smaller, which is much more easily accessible.

In general, low frequencies require very large capacitor and inductor values. For very small frequency signals, such as a few hertz in frequency, very large values are needed for the inductor and capacitor. As the value of the frequency increases, the values of the capacitors and inductor get much smaller. At very high frequencies, such as in the megahertz range, very small inductor and capacitors values are used. For frequencies 1MHz to 99.99MHz, capacitors in the picofarads range and an inductor in the microhenry range are used. For frequencies 100MHz or greater, capacitors in the picofarads and an inductor in the nanohenries is used.

This calculator can handle frequencies up to a few gigahertz. After this frequency, the inductors values fall too low and inductors so small in value are hard to find, thus making the circuit uneasily accessible to build. But normally circuits don't deal with frequencies nearly so high, so this calculator can give very practical components that are easy to find.

To use this calculator, a user simply has to enter the frequency desired. The frequency can be entered in hertz (Hz), kilohertz (KHz), and megahertz (MHz). The calculator will then compute the value of the inductor and capacitor.

As stated, LC circuits may be built with an op amp, a transistor, or inverter logic chip, but its composition of an inductor and capacitor is the same for each case. Therefore, this formula and calculator will work for any arrangement.

游客,如果您要查看本帖隐藏内容请回复

电磁兼容网 - 电磁兼容定制方案 www.emc.wiki - 欢迎您的技术讨论!
xuek | 2022-8-6 09:09:02 | 显示全部楼层
交流学习
电磁兼容网 - 电磁兼容定制方案 www.emc.wiki - 欢迎您的技术讨论!
回复

使用道具 举报

lyon980 | 2023-3-23 12:10:17 | 显示全部楼层
LC resonance frequency
电磁兼容网 - 电磁兼容定制方案 www.emc.wiki - 欢迎您的技术讨论!
曾工 | 2023-6-28 16:51:53 | 显示全部楼层
industrial panasonic lc_filter_TechnicalInfo.pdf (3.05 MB, 下载次数: 2)
曾工致力于电子电器产品的检测、整改、认证服务!

更多咨询可以联系曾工,电话:139 2899 3907(微信同号) 邮箱:xiangwei.zeng@gmail.com
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

286

213

主题

121

回帖

980

积分

高级会员

积分
980

突出贡献优秀版主荣誉管理论坛元老热心会员